ABCBank

July 28, 2023

1 Object-Oriented Banking System

1.1 Introduction

In this report, we will design a proof-of-concept prototype for a banking system for ABCBank. Our
main aim is to demonstrate the application of Object Oriented Programming (OOP) principles and
various design patterns including Strategy, Abstract Factory, Decorator, and Facade.

1.2 Importing Necessary Libraries

We will use the ABCMeta and abstractmethod from the abc module to create abstract base classes
and abstract methods.

[1]: from abc import ABCMeta, abstractmethod

1.3 Strategy Pattern

We will create an Account interface and various concrete classes that implement this interface. This
pattern will enable us to define a family of algorithms (different types of accounts), encapsulate
each one, and make them interchangeable.

[2]: class Account(metaclass=ABCMeta):
@abstractmethod
def account_type(self):
pass

class CurrentAccount (Account):
def account_type(self):
return "Current Account Created"

class HomeLoanAccount (Account):
def account_type(self):
return "Home Loan Account Created"

class CarLoanAccount (Account):
def account_type(self):

return "Car Loan Account Created"

class PersonalLoanAccount(Account) :

def account_type(self):
return "Personal Loan Account Created"

class SavingsAccount (Account):
def account_type(self):
return "Savings Account Created"

1.4 Abstract Factory Pattern

We will create an AccountFactory interface and various concrete factories that implement this
interface. The factory pattern provides a way to encapsulate a group of individual factories with a
common goal.

[3]: class AccountFactory(metaclass=ABCMeta):
OGabstractmethod
def create_account(self):
pass

class CurrentAccountFactory(AccountFactory) :
def create_account(self):
return CurrentAccount ()

class HomeLoanAccountFactory(AccountFactory) :
def create_account(self):
return HomeLoanAccount ()

class CarLoanAccountFactory(AccountFactory) :
def create_account(self):
return CarLoanAccount ()

class PersonalLoanAccountFactory(AccountFactory) :
def create_account(self):
return PersonallLoanAccount ()

class SavingsAccountFactory(AccountFactory):
def create_account(self):
return SavingsAccount ()

1.5 Class Diagram

To better understand the structure and relationships of the classes in our banking system, we pro-
vide a Class Diagram. This diagram includes classes such as Account, Customer, BankingServices,
LoanApplication, and the different types of accounts (CurrentAccount, HomeLoanAccount, etc.).

[4]:

C LoanApplication

apply_for_loan()

account_type()

As shown in the diagram:

e The Customer class interacts with the BankingServices class to perform operations such as
creating an account or applying for a loan. Each Customer has attributes such as name, age,
income, education, and credit_score, and a method check_credit() to determine their
creditworthiness.

o The BankingServices class provides various banking services. It interacts with the
Account and LoanApplication classes to carry out these operations. It has methods like
create_account (), upgrade_account (), and apply_discount ().

e The Account class is an abstract base class for various types of accounts. It has an
abstract method account_type(). The different types of accounts (CurrentAccount,
HomeLoanAccount, etc.) are concrete classes that inherit from Account and implement the
account_type() method.

e The LoanApplication class handles the loan application process. It has a method
apply_for_loan() that checks the Customer's credit score and, if high enough, sends a
request to BankingServices to create a LoanAccount.

This Class Diagram provides a visual representation of the structure of our banking system and
the relationships between its main classes.

1.6 Decorator Pattern

The decorator pattern will be used to add additional features to an Account object dynamically
without affecting other objects of the same class. For example, we can add a decorator to upgrade
the level of a current account to Bronze, Silver, or Gold.

class AccountDecorator (Account):
def __init__(self, account):
self.account = account

def account_type(self):
return self.account.account_type()

class BronzeAccountDecorator (AccountDecorator) :
def account_type(self):
return self.account.account_type() + " with Bronze features"

class SilverAccountDecorator (AccountDecorator) :
def account_type(self):
return self.account.account_type() + " with Silver features"

class GoldAccountDecorator (AccountDecorator) :
def account_type(self):
return self.account.account_type() + " with Gold features"

class DiscountedAccount (AccountDecorator) :
def account_type(self):
return self.account.account_type() + " with discount"

1.7 Customer Class

We create a Customer class to hold customer details and determine their eligibility for different
accounts and features.

[6]: class Customer:
def __init__(self, name, age, income, education, credit_score):
self .name = name
self.age = age
self.income = income
self.education = education
self.credit_score = credit_score

def check_credit(self):
return self.credit_score > 700

1.8 Facade Pattern

We create the BankingServices class to provide a simplified interface for creating accounts and
applying discounts based on customer details.

[6]: class BankingServices:
def __init__(self):
self.account_factories = {

"Current": CurrentAccountFactory(),
"HomeLoan": HomeLoanAccountFactory(),
"CarLoan": CarLoanAccountFactory(),
"Personalloan": PersonalloanAccountFactory(),
"Savings": SavingsAccountFactory()

X
def create_account(self, type, customer):
if type == "HomeLoan" and customer.age > 50:
return "Sorry, customers over 50 do not qualify for home loans."
elif type in ["CarLoan", "Personalloan"] and customer.income < 50000:

return "Sorry, you need a minimum income of 50,000 for car and
~personal loans."
elif type == "Savings" and customer.age < 18:
return "Sorry, you need to be at least 18 years old to open aj
»savings account."
else:
factory = self.account_factories.get(type)
if factory:
account = factory.create_account ()
return account.account_type()
else:
return "Invalid account type"

def upgrade_account(self, account, level):

if level == "Bronze":

return BronzeAccountDecorator(account) .account_type()
elif level == "Silver":

return SilverAccountDecorator(account) .account_type()
elif level == "Gold":

return GoldAccountDecorator(account).account_type()
else:

return "Invalid level"

def apply_discount(self, account):
return DiscountedAccount (account) .account_type ()

1.9 Loan Application Process
We add a LoanApplication class that handles loan applications.

[7]: | class LoanApplication:
def __init__(self, banking services):
self .banking services = banking_services

def apply_for_loan(self, type, customer):
if customer.check_credit():

return self.banking services.create_account(type, customer)
else:

return "Sorry, your credit score is too low for a loan."

1.10 Testing of the System

We test the system by creating several accounts, upgrading them, applying discounts, and handling
loan applications.

[8]: banking services = BankingServices()
loan_application = LoanApplication(banking_services)

Creating customers

ola = Customer("0Ola Nordmann", 25, 70000, "Bachelor's", 800)

lisa = Customer("Lisa Andersen", 55, 80000, "Master's", 650)
anders = Customer("Anders Andersen", 30, 50000, "Bachelor's", 750)

Ola applies for a car loan
print(loan_application.apply_for_loan("CarLoan", ola))

Lisa tries to apply for a home loan
print(loan_application.apply_for_loan("HomeLoan", lisa))

Anders opens a savings account
print(banking_services.create_account("Savings", anders))

Anders upgrades his savings account to Gold

account = SavingsAccount ()

upgraded_account = banking_ services.upgrade_account(account, "Gold")
print (upgraded_account)

Anders applies for a discount on his account
discounted_account = banking services.apply_discount(account)
print(discounted_account)

Anders tries to open a home loan account
print(loan_application.apply_for_loan("HomeLoan", anders))

Lisa tries to open a current account
print(banking_ services.create_account("Current", lisa))

Lisa upgrades her current account to Stilver

account = CurrentAccount()

upgraded_account = banking_ services.upgrade_account(account, "Silver")
print (upgraded_account)

Car Loan Account Created

Sorry, your credit score is too low for a loan.
Savings Account Created

Savings Account Created with Gold features
Savings Account Created with discount

Home Loan Account Created

Current Account Created

Current Account Created with Silver features

1.11 Design Choices

Encapsulation: The data (attributes) and methods that operate on the data are bundled to-
gether as a unit (class). This makes the code easier to understand and maintain, and protects the
data from outside interference and misuse.

Inheritance: This principle is used to define different types of accounts. A base class Account
is defined and different types of accounts are derived from this base class, inheriting its properties
and behaviors.

Polymorphism: This principle is used to allow different types of accounts to be created and
handled using a unified interface. This makes the system flexible and easy to expand with new
account types.

1.11.1 The design also incorporates the following design patterns:

Strategy Pattern: This pattern is used to define a family of interchangeable algorithms. In the
context of the system, these algorithms are the different types of accounts. By encapsulating each
as an object, we make them interchangeable within the context of the Account class.

Abstract Factory Pattern: This pattern is used to create objects of the Account class. A
factory class AccountFactory is defined to provide an interface for creating objects of Account
class, and different concrete factory classes are defined for creating different types of accounts.

Decorator Pattern: This pattern is used to add additional behaviors to an Account object
dynamically. In the context of the system, this pattern is used to upgrade an account to a Bronze,
Silver, or Gold account, adding additional features to the account.

Facade Pattern: This pattern is used to provide a simplified interface to a complex subsystem.
In the context of the system, the BankingServices class provides a simplified interface for creating
and upgrading accounts.

1.11.2 Benefits of the Design Choices

Flexibility: The use of the Strategy pattern allows the system to handle different types of ac-
counts that have different behaviors. The system can easily be extended to handle new types of
accounts.

Ease of expansion: The Abstract Factory pattern makes it easy to add new types of accounts.
A new type of account can be added by defining a new concrete factory class without changing the
existing code.

Dynamic behavior modification: The Decorator pattern allows behaviors of an account to be
modified dynamically, providing flexibility in upgrading accounts.

Simplicity: The Facade pattern hides the complexities of the underlying system, providing a
simple interface for creating and upgrading accounts. This makes the system easier to use.

Future-proof: The design is robust against changes. New types of accounts can easily be added
and existing accounts can easily be modified without changing the existing code. This makes the
system more future-proof.

In conclusion, this design provides a robust, flexible, and extensible system for managing accounts
in a banking system. The use of OOP principles and design patterns makes the system easy to

understand, maintain, and expand, ensuring it is future-proof and adaptable to changing require-
ments.

	Object-Oriented Banking System
	Introduction
	Importing Necessary Libraries
	Strategy Pattern
	Abstract Factory Pattern
	Class Diagram
	Decorator Pattern
	Customer Class
	Facade Pattern
	Loan Application Process
	Testing of the System
	Design Choices
	The design also incorporates the following design patterns:
	Benefits of the Design Choices

